

Occupational Uses

- Used as a solvent to remove grease from metal parts; also used in production of other chemicals.
- An extraction solvent for greases, oils, fats, waxes, tars in the textile industry
- Dry cleaning operations
- Components of adhesives, lubricants, paint strippers, pesticides, and cold metal cleaners.

Occupational Exposure

- Humans can be exposed to trichlorethylene by inhalation, ingestion, and dermal absorption.
- Workers the metal-degreasing and dry-cleaning operations have the largest exposure rates to Trichlorethylene.
- Members of the general population can also be exposed through contamination of air, food, and water.
- Other occupations include:
 - Manufacturing pharmaceuticals and chemical workers

Toxicological Data

- Can enter the body from contaminated air, water, food, and soil via ingestion, inhalation, and dermal absorption.
- It is a known carcinogen
- People exposed at small amounts may experience dizziness, headaches, sleepiness.
- People exposed to larger amounts may experience coma and even death.
- Can have harmful effects on nervous system, respiratory system, kidneys, immune system, and heart.
- Does not occur naturally

Epidemiological Studies

- TCE exposure is associated with several types of cancers including kidney, liver, cervix, and lymphatic system
- There are consistent studies with a strong association of TCE exposure and kidney cancer. Results are supported by studies showing specific renal cell mutations found in renal carcinoma patients exposed to TCE.

Trichloroethylene

Aaron Zimmerman

Sampling Methods

- Trichlorethylene is collected using a solid sorbent tube (coconut shell charcoal) at 100mg/50mg.
- Flow rate of 0.01 to 0.2 liters per minute
- A volume min of 1 liter at 100 ppm, and volume max at 30 liters
- Air, water, and soil samples can be the source of sampling.

Analytical Methods

• The most common methods include:

- Gas chromatography (best option)
- NIOSH reference 1994a
- Sample detection limit 27 ppm
- Hall's electrolytic conductivity detector
- Flame ionization detector

Figure 2. Trichloroethylene Product

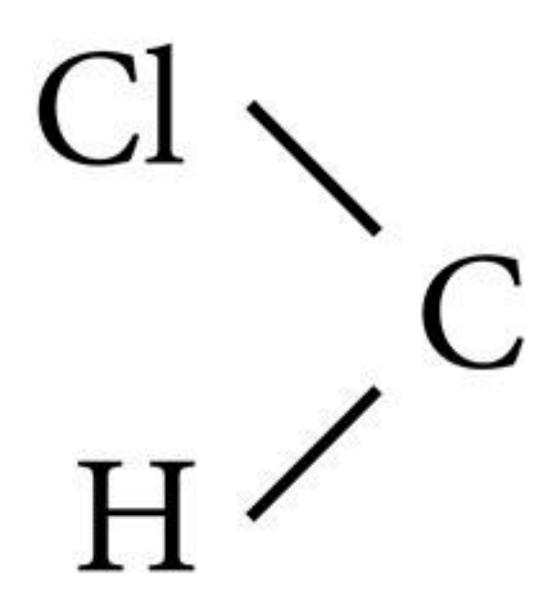
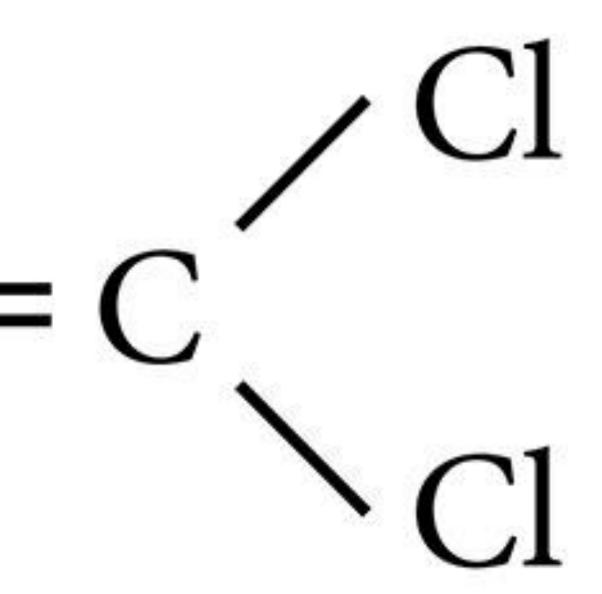



Figure 3. Trichloroethylene Chemical Composition https://www.ncbi.nlm.nih.gov/books/NBK138713

Figure 1. Sorbent Tube for sampling https://www.skcinc.com/products/sorbent-tubesanasorb-csc-coconut-charcoal-1

https://buygreenchem.com/products/trichloroethylene-tce-solvent-for-professional-cleaning-paint-mixing-hazmat-free-shipping

Occupational Exposure Limits (OELs)

- OSHA Permissible Exposure Limit (PEL)
- 8-hr TWA 100 ppm
- OSHA Action Level • 8-hr TWA – 8.8 8 μ g/m³
- ACGIH Threshold Limit Value (TLV)
 - 8-hr TWA 10 ppm

Case Study

- Collegeville, Pennsylvania.

- mean at 480 mg/L.

Control Measures

- Engineering control measures
- systems within the building area.
- Administrative controls measures
 - access to trichloroethylene.
- Personal protective equipment measures
 - and the use of eye protection.

References

- https://www.osha.gov/chemicaldata/684

- https://www.epa.gov/sites/default/files/2016-09/documents/trichloroethylene.pdf

EHST 3700: Industrial Hygiene Environmental Health Sciences Program Department of Health Education and Promotion East Carolina University Greenville, North Carolina

 NIOSH Recommended Exposure Limit (REL) • (Reduce exposure to lowest feasible concentration)

NIOSH investigators visited the Superior Tube Company in

• It was a steel manufacturer where they used trichloroethylene has a degreasing solvent in their operation.

• The concentration of TCE inn the air was 117-357 mg/m³ with short term exposure as high as 2000 mg/m^3 .

• Urine samples collected from exposed workers before the shift contained an average of 298 mg/L of total TCE metabolites. The

• Elimination or substitution of trichloroethylene. Also, the

enclosure of the area in which it is used, and increased ventilation

• Work process training, job rotation, employee breaks, and limiting

• The use of improved respirators, gloves to prevent skin contact,

https://www.ncbi.nlm.nih.gov/books/NBK138713/

https://www.atsdr.cdc.gov/csem/trichloroethylene/who is at risk.html

https://www.cdc.gov/niosh/topics/trichloroethylene/default.html

https://www.cdc.gov/niosh/topics/hierarchy/default.html

https://www.atsdr.cdc.gov/toxprofiles/tp19.pdf

https://www.cdc.gov/niosh/hhe/reports/pdfs/80-49-808.pdf

https://www.atsdr.cdc.gov/ToxProfiles/tp19-c7.pdf