Copyrighted Material

The D Programming Language

Andrei Alexandrescu

#Addison-Wesley

Upper Saddle River, NJ « Boston « Indianapolis « San Francisco
New York « Toronto « Montreal « London « Munich ¢ Paris « Madrid

Capetown « Sydney « Tokyo « Singapore » Mexico City




Chapter

“D’iving In

You know what's coming first, so without further ado:

import std.stdio;

void main{) {
writeln("Hello, world!");

}

Depending on what other languages vou know, you might have a feeling of déja vu,
a mild appreciation for simplicity, or perhaps a slight disappointment that D didn't go
the scripting languages’ route of allowing top-level statements. (Top-level statements
invite global variables, which quickly turn into a liability as the program grows; D does
offer ways of executing code outside main, just in a more structured manner.) If you're
a stickler for precision, you'll be relieved to hear that void main is equivalent to an int
main that returns “success” (code zero) to the operating system if it successfully finishes
execution.

But let'’s not get ahead of ourselves. The purpaose of the traditional “Hello, world!"
program is not to discuss a language's capabilities, but instead to get you started on
writing and running programs using that language. If you don't have some IDE offering
transparent builds, the command line is an easy route. After you have typed the code
above in a file called, say, hello.d. fire a shell and type the following commands:

§ dmd hello.d

§ ./hello
Hello, world!
$

1

Copyrighted Material



Copyrighted Material

2 Chapter 1. "D"iving In

where $ stands in for your command prompt (it could be C: \Path\To\Dir>on Win-
dows or /path/to/dir% on Unix systems, such as OSX, Linux, and Cygwin). You can
even get the program to compile and run automatically if you apply a bit of your sys-
tem-fu skills. On Windows, you may want to associate the shell command “Run” with
the program rdmd . exe, which is part of the installation. Unix-like systems support the
“shebang notation” for launching scripts, syntax that D understands; adding the line

#! /usr/bin/ rdmd

to the very beginning of your hello.d program makes it directly executable. After you
make that change, you can simply type at the command prompt:

§ chmod u+x hello.d
$§ ./hello.d

Hello, world!

$

(You need to do the chmod thing only once.)

On all operating systems, the rdmd program is smart enough to cache the generated
executable, such that compilation is actually done only after you've changed the pro-
gram, not every time you run it. This, combined with the lact that the compiler proper is
very fast, fosters a rapid edit-run cycle that helps short scripts and large programs alike.

The program itsclf starts with the directive

import std.stdio;

which instructs the compiler to look for a module called std. stdio and make its sym-
bols available for use. import is akin to the #include preprocessor directive found in
C and C++ but is closer in semantics to Python's import: there is no textual inclusion
taking place—just a symbol table acquisition. Repeated imports of the same file are of
no import.

Per the venerable tradition established by C, a D program consists of a collection of
declarations spread across multiple files. The declarations can introduce, among other
things, types, functions, and data. Our first program defines the main function to take
no arguments and return “nothingness”—void, that is. When invoked, main calls the
writeln function (which, of course, was cunningly defined by the std. stdio module),
passing it a constant string. The 1n suffix indicates that writeln appends a newline to
the printed text.

The following sections provide a quick drive through Deeville. Little illustrative pro-
grams introduce basic language concepts. At this point the emphasis is on conveying
a feel for the language, rather than giving pedantic definitions. Later chapters will treat
each part of the language in greater detail.



1.1. Numbers and Expressions 3

1.1 Numbers and Expressions

Are you ever curious how tall foreigners are? Let’s write a simple program that displays
a range of usual heights in feet + inches and in centimeters.

/*
Compute heights in centimeters for a range of heights
expressed in feet and inches

»/

import std.stdio;

void main() {
/7 Values unlikely to change scon
immutable inchesPerfFoot = 12;
immutable cmPerInch = 2.54;

// Loop'n write
foreach (feet; 5 .. 7) {
foreach (inches; © .. inchesPerFoot) {
writeln(feet, "', inches, "'’'\t",
(feet + inchesPerFoot + inches) » cmPerlInch);

When executed, this program will print a nice two-column list:

50 152.4

o R 154.94
S 157 .48
610’ 208.28
6711’ 210.82

The construct foreach (feet; S .. 7) { ... } is an iteration statement that defines
an integer variable feet and binds it in turn to 5 and then 6, but not 7 (the interval is
open to the right).

Just like Java, C++, and C# D supports /emultiline comments+/ and
//single-line comments (plus documentation comments, which we'll get to later).
One more interesting detail is the way our little program introduces its data. First, there
are two constants:

immutable inchesPerFoot = 12;
immutable cmPerInch = 2.54;

Copymighted Material



1 Chapter 1. "D"iving In

Constants that will never, ever change are introduced with the keyword immutable.
Constants, as well as variables, don't need to have a manifest type; the actual type can
be inferred from the value with which the symbol is initialized. In this case, the lit-
eral 12 tells the compiler that inchesPerFoot is an integer (denoted in D with the famil-
iar int); similarly, the literal 2.54 causes cmPerInch to be a floating-point constant {of
type double). Going forth, we notice that the definitions of feet and inches avail them-
selves of the same magic, because they look like variables all right, yet have no explicit
type adornments. That doesn't make the program any less safe than one that states:

immutable int inchesPerFoot = 12;
immutable double cmPerInch = 2.54;

foreach (int feet; 5 .. 7) {

}

and so on, only less redundant. The compiler allows omitting type declarations only
when types can be unambiguously inferred from context. But now that types have come
up, let’s pause for a minute and see what numeric types are available,

In order of increasing size, the signed integral types include byte, short, int, and
long, having sizes of exactly 8, 16, 32, and 64 bits, respectively. Lach of these types has an
unsigned counterpart of the same size, named following a simple rule: ubyte, ushort,
uint, and ulong. (There is no “unsigned” modifier as in C.) Floating-point types consist
of float (32-bit IEEE 754 single-precision number), double (64-bit IEEE 754), and real
(which is as large as the machine’s floating-point registers can go, but no less than 64
bits; for example, on Intel machines real is a so-called [EEE 754 double-extended 79-bit
format).

Getting back to the sane realm of integral numbers, literals such as 42 can be as-
signed to any numeric type, but note that the compiler checks whether the target type
is actually large enough to accommodate that value. So the declaration

immutable byte inchesPerFoot = 12;

is as good as the one omitting byte because 12 fits as comfortably in 8 bits as in 32, By
default, if the target type is to be deduced from the number (as in the sample program),
integral constants have type int and floating-point constants have type double.

Using these types, you can build a lot of expressions in D using arithmetic operators
and functions. The operators and their precedence are much like the ones vou'd find
in D’s sibling languages: +, -, +, /, and % for basic arithmetic, ==, |=, <, >, <=, >= for
comparisons, fun(argumentl, argument2) for function calls, and so on,

Getting back to our centimeters-to-inches program, there are two notewarthy de-
tails about the call to writeln. One is that writeln takes five arguments (as opposed
to one in the program that opened the hailing frequencies). Much like the 170 facilities

Copyrighted Material



1.2, Statements 5

found in Pascal (writeln), C (printf), or C++ (cout), D's writeln function acceplts a
variable number of arguments (it is a “variadic function”). In D, however, users can de-
fine their own variadic functions (unlike in Pascal) that are always typesafe (unlike in C)
without needing to gratuitously hijack operators (unlike in C++). The other detail is that
our call to writeln awkwardly mixes formatting Information with the data being for-
matted. Separating data from presentation is often desirable, so let’s use the formatted
write function writefln instead:

writefln("%s'%s'"\t%s", feet, inches,
(feet + inchesPerfoot + inches) = cmPerlnch);

The newly arranged call produces exactly the same output, with the difference that
writefln's first argument describes the format entirely. % introduces a format specifier
similar to C's printf, for example, %i for integers, %f for floating-point numbers, and %s
for strings.

If you've used printf, you'd feel right at home were it not for an odd detail: we're
printing ints and doubles here—how come they are both described with the %s speci-
fier, which traditionally describes only strings? The answer s simple. D’s variadic argu-
ment facility gives writefLn access to the actual argument types passed, a setup that has
two nice consequences: (1) the meaning of %s could be expanded to “whatever the ar-
gument’s default string representation is,” and (2) if you don't match the format specifier
with the actual argument types, you get a clean-cut error instead of the weird behavior
specific to misformatted printf calls (to say nothing about the security exploits made
possible by printf calls with untrusted format strings).

1.2 Statements

In D, just as in its sibling languages, any expression followed by a semicolon is a state-
ment {for example, the “Hello, world!" program’ call to writeln has a ; right after it).
The effect of the statement Is to simply evaluate the expression.

D is a member of the "curly-braces block-scoped” family, meaning that you can
group several statements into one by surrounding them with { and }—something that’s
necessary, for example, when you want to do several things inside a foreach loop. In the
case of exactly one statement, you can omit the curly braces entirely. In fact, our entire
height conversion double loop could be rewritten as follows:

foreach (feet; 5 .. 7)
foreach (inches; © .. inchesPerfFoot)
writefln("%s'%s’'"\t%s", feet, inches,
(feet + inchesPerFoot + inches) = cmPerInch);

Omitting braces for single statements has the advantage of shorter code and the dis-
advantage of making edits more fiddly (during code maintenance, you'll need to add or

Comrighted Material




6 Chapter 1. “D"iving In

remove braces as you mess with statements). People tend to be pretty divided when it
comes to rules for indentation and for placing curly braces. In fact, so long as you're con-
sistent, these things are not as important as they might seem, and as a proof, the style
used in this book (full bracing even for single statements, opening braces on the intro-
ducing line, and closing braces on their own lines) is, for typographical reasons, quite
different from the author’s style in everyday code. If he could do this without turning
into a werewolf, so could anyone.

The Python language made popular a different style of expressing block structure by
means of indentation—"form follows structure” at its best. Whitespace that matters is
an odd proposition for programmers of some other languages, but Python programmers
swear by it. D normally ignores whitespace but is especially designed to be easily parsed
(e.g., parsing does not need to understand the meaning of symbels), which suggests that
a nice pet project could implement a simple preprocessor allowing usage of Python in-
dentation style with D without suffering any inconvenience in the process of compiling,
running, and debugging programs,

The code samples above also introduced the if statement. The general form should
be very familiar:

if (-expression:) statement,: else <Statement;-

A nice theoretical result known as the rheorem of structure |10] proves that we can
implement any algorithm using compound statements, if tests, and loops & la for and
foreach. Of course, any realistic language would offer more than just that, and D is
no exception, but for now let’s declare ourselves content as far as statements go and
move on.

1.3 Function Basics

Let's go beyond the required definition of the main function and see how to define other
functions in D. Function definitions follow the model found in other Algol-like lan-
guages: first comes the return type, then the function’s name, and finally the formal
parameters' as a parenthesized comma-separated list. For example, to define a func-
tion called pow that takes a double and an int and returns a double, you'd write

double pow(double base, int exponent) {

) —

Each function parameter (base and exponent in the example above) has, in addi-
tion to its type, an optional storage class that decides the way arguments are passed to

1. This book consistently uses parameter o reler 10 the value accepted and used inside the function and
argument when talking about the value pussed from the outside to the function during invocation.

Copyrighted Material




